Search results

1 – 1 of 1
Article
Publication date: 22 March 2019

Zilai Zhang, Shusheng Zang and Bing Ge

This paper aims to develop a dynamic performance model of three-shaft gas turbine for electricity generation and to study a multi-loop control strategy of three-shaft gas turbine…

Abstract

Purpose

This paper aims to develop a dynamic performance model of three-shaft gas turbine for electricity generation and to study a multi-loop control strategy of three-shaft gas turbine for electricity generation.

Design/methodology/approach

In this paper, the dynamic performance model of the three-shaft gas turbine is established and developed. A novel approach, variable partial differential coefficient deviation linearization method is used to simulate the dynamic performance of the three-shaft gas turbine. Single-loop control system, feed-forward feedback control system and cascade system are assessed to control the engine during transient operation.

Findings

A novel approach, variable partial differential coefficient deviation linearization method is used to simulate the dynamic performance of the three-shaft gas turbine. According to the results shown, the cascade control system is most satisfactory due to its fastest response and the best stability and robustness.

Originality/value

The method of variable partial linearization is adopted to make the dynamic simulation of the model achieve higher precision, better steady state and less computation time. This paper provides a theoretical study for the multi-loop control system of a marine three-shaft gas turbine.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 1 of 1